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Abstract. We propose a new method to probe for variations in the fine structure constant α
using clusters of galaxies, opening up a window on a new redshift range for such constraints.
Hot clusters shine in the X-ray mainly due to bremsstrahlung, while they leave an imprint on
the CMB frequency spectrum through the Sunyaev-Zel’dovich effect. These two physical
processes can be characterized by the integrated Comptonization parameter YS Z D2

A and its
X-ray counterpart, the YX parameter. The ratio of these two quantities is expected to be
constant from numerical simulations and current observations. We show that this fact can
be exploited to constrain α, as the ratio of the two parameters depends on the fine structure
constant as ∝ α3.5. We determine current constraints from a combination of Planck S Z and
XMM-Newton data, testing different models of variation of α. When fitting for a constant
value of α, we find that current constraints are at the 0.8% level, comparable with current
CMB bounds. We discuss strategies for further improving these constraints by at least a
factor ∼ 3.
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1. Introduction

Constraints on the fine structure constant are
currently derived from a number of different
observations, ranging from laboratory to astro-
physical measurements (see e.g. Uzan 2003).
E.g. CMB data from the WMAP7 satellite in
combination with ACT and SPT data constrain
α at ∼ 1% level (68% c.l.) at z ∼ 1000
Menegoni, E., et al. (2012). Tantalizing hints
of variation of α have actually been found in
atomic absorption lines in quasar spectra at the
5-sigma level (see Webb et al. 2011), although
this result was questioned by independent anal-
ysis (see e.g. Srianand et al. 2004).

Opening up new redshift ranges is useful
as theory is not a reliable guide to the expected
nature of variations in fundamental constants,
so that variations might be e.g. non-monotonic
with z. In Galli (2013), we proposed to con-
strain the fine structure constant combining
measurements of the Sunyaev-Zel’dovich (SZ)
effect Sunyaev and Zeldovich (1972) with the
measurement of X-ray emission in clusters of
galaxies.

CMB experiments such as Planck, SPT
or ACT are in fact currently detecting many
hundreds of clusters through the SZ effect.
Some of these are known clusters, while oth-
ers are newly discovered, and have been or will
soon be observed in follow-up campaigns by
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other observatories, such as the Chandra or the
XMM-Newton telescopes in the X-rays. Thus,
measurements of both the SZ effect and of the
X-ray emission of hundreds of clusters will
soon be available up to a redshift of z ∼ 1
Chamballu et al. (2012).

The SZ effect is often expressed in terms of
the integrated Compton parameter YS Z D2

A (see
Sect. 2.1 for a detailed definition), while the
X-ray emission of hot clusters (kT & 2KeV),
mainly due to bremsstrahlung, can be charac-
terized by the parameter YX = MgTX (see Sect.
??). Both YS Z D2

A and YX are approximations
of the thermal energy contained in the clusters,
and are thus expected to strongly correlate with
total mass, weakly depending on its dynamical
state Kaiser (1986); Kravtsov et al. (2006). In
the limit where gravity completely dominates
cluster formation, YS Z D2

A and YX are expected
to scale in the same way with mass and redshift
as power-laws. Indeed, numerical simulations
suggest they both have equivalent scaling rela-
tions that are close to be self-similar. Thus, the
YS Z D2

A − YX relation is expected to be, on av-
erage, constant at all z Kravtsov et al. (2006);
Comis et al. (2011); Sembolini, et al. (2012).
Furthermore, the same simulations show that
the scatter on the relation between YS Z D2

A and
YX is small, at . 15% level.

So far, the data are consistent with these
predictions, see e.g.Planck Collaboration
(2011a).

In Galli (2013), we propose to use the ob-
served linear relation between YX and YS Z D2

A
to constrain the fine structure constant. In fact,
the YS Z and the YX parameters have different
dependencies on the fine structure constant, so
that their ratio strongly depends on α. The fact
that no deviation from a constant have yet been
observed in the YS Z D2

A−YX relation can be used
to constrain variations in α.

2. Method

2.1. Sunyaev-Zel’dovich effect

Over 80% of the baryonic content of clusters
of galaxies is expected to be under the form
of intergalactic hot gas at temperatures of or-
der T ∼ 107 − 108K Borgani & Kravtsov

(2009). The ionized gas can inverse Compton
scatter CMB photons, leaving a signature, the
Sunyaev-Zel’dovich effect, in the CMB spec-
trum Sunyaev and Zeldovich (1972). From
this spectral distortion, one can calculate the
so called spherical integrated Compton param-
eter, defined as:

YS Z(R)D2
A =

σT

mec2

∫ R

0
n(r)T (r)4πr2dr (1)

(2)

where me is the electron mass, n is the elec-
tron number density at distance r from the cen-
ter of the cluster, T is the temperature of the
gas, DA is the angular diameter distance and
σT is the Thompson cross section, which de-
pends on the fine structure constant as

σT =
8π
3

~2

m2
ec2α

2. (3)

The YS Z parameter thus depends on the fine
structure constant via the Thompson cross sec-
tion in Eq. 3 as

YS Z ∝ α2 (4)

The magnitude of the X-ray emission is
often quantified through the YX parameter
Kravtsov et al. (2006); Arnaud et al. (2010),
which is analogous to the SZ parameter YS Z . It
is defined as

YX = Mg(R)TX (5)

Here, Mg(R) is the X-ray determined gas
mass within a certain cluster radius R, and TX
is the spectroscopically determined X-ray tem-
perature of the cluster, determined within a
cylindrical annulus that excludes the core. The
gas mass is defined as

Mg(R) = µemp

∫
nedV (6)

∝ neR3 (7)

with µ the mean molecular weight of
eletrons. The gas mass can be determined from
X-ray data as the density profile of the cluster
can be inferred from the emissivity, which is in
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turn obtained from the observed surface bright-
ness. This assumes that the temperature can be
spectroscopically determined and that the an-
gular diameter distance is known.

We can then link the inferred gas mass to
the fine structure constant (see Galli (2013) for
details)

Mg(R) ∝
√
ενT 1/2ehν/kTα−3R3 (8)

∝
√
α−3IνD−1

A D3
A (9)

∝
√
α−3IνD

5/2
A (10)

The YX parameter thus depends on the fine
structure constant as

YX ∝ α−1.5 (11)

2.2. YS Z − YX relation and α

From Eq. 5, 2 and 7, the ratio between YS Z and
YX depends on the structure of a cluster as

YS Z D2
A

YX
= CXS Z

∫
ne(r)T (r)dV

TX(R)
∫

ne(r)dV
(12)

CXS Z =
σT

mec2

1
µemp

(13)

The YS Z parameter depends on the gas
mass weighted temperature, while YX depends
on the X-ray temperature. Both are approxi-
mations of the same physical quantity, i.e. the
thermal energy of the cluster. It is then clear
that if clusters were isothermal, the ratio be-
tween the two would exactely be equal to a
constant. However, the ratio can still be ex-
pected to be constant if the temperature pro-
file of the clusters is universal. This condition
is fullfilled if the evolution of clusters is com-
pletely dominated by gravity, weakly depend-
ing on gas physics. In this case, both YS Z and
YX are expected to strongly correlate with the
mass of the cluster via the virial theorem, both
with the same dependence on mass and redshift
Kaiser (1986); Borgani & Kravtsov (2009)

Numerical simulations have shown that
indeed the two parameters have scaling re-
lations with the total mass of the cluster
that are very close to be self-similar, i.e.
that YX ,YS Z ∝ M5/3E(z)2/3, with E(z) =

(H(z)/H0). Furthermore, they have shown that
the scaling relation between YX and YS Z D2

A has
very small scatter, at the level of ∼ 15%Stanek,
et al. (2010); Kay et al. (2012); Fabjan et al.
(2011). The relation between the two is also
expected to be independent of redshift, as their
scaling relation with mass have the same de-
pendence on cosmology. Finally, the relation
seems not to crucially depend on the dynami-
cal state of the clusters Arnaud et al. (2010).

Based on all these considerations, the ratio
between YS Z and YX is expected to be constant

YS Z D2
A

YX
∼ const

for clusters at different redshifts or space posi-
tions.

This fact can be exploited to constrain the
variation of the fine structure constant at differ-
ent time/space positions i, as


YS Z D2
A

YX


i
=

(
αi

α0

)3.5 
YS Z D2

A

YX


0

(14)

where
(

YS Z D2
A

YX

)
0

is a reference value of the ra-

tio that assumes a reference value of the fine
structure constant α0. The method enables us to
measure the relative variation of α with respect
to α0 as a function of redshift and space po-
sition. Alternatevely, if one could reliably es-

timate a reference value of
(

YS Z D2
A

YX

)
0

knowing

the value of α0, e.g. from simulations, it would
also be possible to have an absolute measure of
α for each cluster.

In any case, if a variation is detected, it
could be clearly either due to an uncorrected
astrophysical or instrumental systematic error
or due to an actual change in α. But if no vari-
ation is detected a limit on the variation of α
can be extracted. We cannot logically exclude
the possibility that intrisic changes of the ratio(

YS Z D2
A

YX

)
or uncorrected systematics might pro-

voke a variation in the YS Z − YX relation that
conspires to precisely cancel a true variation in
α resulting in no apparent variation.This case
would lead to a false rejection of the variation
hypothesis.
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3. Constraints from current data

3.1. Data

We present in this section constraints on α
from current data. For the analysis, we use
SZ and X-ray data from a subsample of the
Planck Early Sunyaev-Zel’dovich cluster sam-
ple (Planck Collaboration 2011b), as reported
in Planck Collaboration (2011a). The clus-
ters of the ESZ sample are detected in the
Planck all-sky maps through their thermal SZ
imprint on the CMB. They are characterized
by a S/N higher than 6, and are required to
have a X-ray counterpart in the MCXC cat-
alog Piffaretti et al. (2011). The subsample
then reported in Planck Collaboration (2011a)
is composed by 62 clusters that had been ob-
served by the XMM-Newton telescope, that are
not contamined by flares and whose morphol-
ogy is regular enough that spherical symmetry
can be assumed. We additionally exclude from
the analysis cluster A2034, whose redshift es-
timate is discordant in Planck Collaboration
(2011a) and Mantz et al. (2010), as noted by
Rozo et al. (2012). We thus use 61 clusters, in
the redshift range 0.044 < z < 0.44. The YS Z
and YX parameters we use here are measured
within a radius R500, i.e. the radius at which
the mean matter density of the cluster is 500
times larger than the critical density at the red-
shift of the cluster. Furthermore, X-ray temper-
atures are defined within a cylindrical annulus
of radius [0.15 − 0.75]R500.

Fig. 1 shows the space and redshift distri-
bution of the clusters used.

These data are neither a complete nor a
representative sample of clusters, and the ob-
servation of a larger sample of clusters in the
X-ray will be required to properly character-
ize the Planck clusters, in particular to study
the intrisic scatter and Malmquist bias, as well
as possible systematics Planck Collaboration
(2012) However, we use this dataset to provide
a first estimate of the constraints on α that one
can derive from this dataset.

3.2. Analysis and constraints: Constant
α

We first analyze the data in order to find con-
straints on α under the simple assumption that
no evolution in time or space is present, i.e. that
the YS Z D2

A/YX ratio is a constant. Any devia-
tion exceeding statistical error is attributed to
intrinsic scatter.

We calculate the mean of YS Z D2
A/YX

through a modified weighted least square
method (MWLS). This method differs from a
simple weighted least square because it takes
into account the fact that statistical uncertain-
ties on YS Z D2

A/YX , calculated by propagat-
ing the statistical errors on YS Z D2

A and YX ,
can be underestimated or can neglect intrin-
sic scatter. A weighted least square method
provides in fact a simple weighted mean of
log (YS Z DA/CXS ZYX) = −0.050 ± 0.014, with
a χ2 per degrees of freedom of χ2/do f =
223/60. Clearly, such a high reduced χ2 might
indicate either that a constant is a poor descrip-
tion of the YS Z D2

A/YX data, or the presence of
e.g. additional intrinsic scatter. Under this sec-
ond assumption, we can account for a possi-
ble wider dispersion of the data by quadrat-
ically adding to the statistical error of each
data point a constant term σintr (see e.g. Pratt
et al. 2006) for the unknown intrinsic scat-
ter. The weighted mean and the intrinsic scatter
are then jointly determined so that the reduced
χ2 equals 1. Following this method, we obtain
log (YS Z DA/CXS ZYX)i = −0.031±0.028, which
corresponds to (YS Z DA/CXS ZYX)i = 0.969 ±
0.027. This result is in perfect agreement with
the results found by Planck Collaboration
(2011a) and Rozo et al. (2012). We find that
the intrinsic scatter term for each data point is
equal to σlog

intr = 0.17. We note here that we do
not correct the data for Malmquist bias, which
for this set of data is not expected to mod-
ify the best fit Planck Collaboration (2011a),
but might provide a slightly higher estimate
of the intrinsic scatter compared to corrected
data. We also underline that the magnitude of
the scatter, at the level of ∼ 18%, is in good
agreement with the expectations from numer-
ical simulations mentioned in Sections 1 and
2.2.
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Fig. 1. Left: Right ascenscion and declination (in degrees) of the Planck ESZ cluster subsample used for the
analysis. Right: YS Z D2

A/CXS ZYX of the clusters in function of redshift. The error bars shown are calculated
from error propagation of the errors on YS Z and YX as published in Planck Collaboration (2011a). For
comparison, we also show the data binned in five uniform redshift intervals (red crosses). Throughout the
paper we used the full sample and not the binned data to calculate results. Taken from Galli (2013)

In order to check the results from the
MWLS method, we also calculate the mean as
a simple arithmetic average and estimate its un-
certainty by bootstrap resampling. In this case
we obtain (YS Z DA/CXS ZYX) = 0.969 ± 0.021,
in agreement with what previously found. The
scatter in this case is calculated following
Planck Collaboration (2011a): we calculate
σ′intr as the quadratic difference between the
raw scatter σraw and the statistical uncertainty

χ2
r =

∑

i

(xi− < xi >)2

σ2(xi)
1

do f
(15)

σ2
stat =

1
N

∑

i

σ2(xi) (16)

σ2
raw = χ2

r
N∑

i 1/σ2(xi)
(17)

σ′2i = σ2
raw − σ2

stat (18)

where χ2
r is the reduced χ2, do f is the num-

ber of degrees of freedom, in this case equal
to do f = 60, and N is the number of clusters,
in this case equal to N = 61. The recovered
scatter is σ′intr = 0.17± 0.026, in perfect agree-
ment with what found with the first method.
The uncertainty on the scatter is calculated as
in Planck Collaboration (2011c), ∆(σ′intr) =

σ2
intr(2N(N − 1))−1 ∑

(1 + σ(xi)/σintr2 )2.
We can then convert these results to a mea-

surement on α. The current assumption is that
(YS Z D2

A/CXS ZYX) ratio is constant, and thus

that the fine structure constant has the same
value for all the clusters considered, α = α0.
The uncertainty on α is then:

σ(α)
α0

=
1

3.5
σ(YS Z D2

A/CXS ZYX)

(YS Z D2
A/CXS ZYX)0

= 0.0078,

i.e. a constraint on α at ∼ 0.8% level at 68%
c.l. This uncertainty includes both statistical er-
ror and intrinsic scatter, but does not include
uncertainties on the cosmological parameters
used to determine the angular diameter dis-
tance, here chosen for our reference cosmol-
ogy, i. e. flat ΛCDM with H0 = 70Km/s/Mpc,
Ωm = 0.3, and ΩΛ = 0.7.

The cosmological parameters are not per-
fectly known, and degeneracies with α could
limit the constraining power of clusters. We
now analyze the impact of these uncertainties.

The dependence of the (YS Z D2
A/CXS ZYX)

ratio on the angular diameter distance is


YS Z D2
A

CXS ZYX


re f
∼


YS Z D2

A

CXS ZYX


true

(
(DA)re f

(DA)true

)−0.5

(19)

where re f indicates the angular diameter dis-
tance calculated with the reference cosmology,
and true indicates the unknown true cosmol-
ogy.

First, a wrong estimate of the angular di-
ameter distance could generate a ”fake” evolu-
tion with redshift of the (YS Z D2

A/CXS ZYX) ra-
tio. Second, the uncertainties on the knowledge
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of DA can affect the errors on α. Still, the de-
pendence is weak and current constraints on
the angular diameter distance are at the level
of a few percent Larson et al. (2011). We thus
expect that, at least for current data, the un-
certainty on cosmological parameters should
not affect constraints on α. We indeed verified
that marginalizing over cosmological param-
eters do not significantly affect the preented
constraints (see Galli 2013).

As more and more clusters are found,
this might become a limiting factor for con-
straints on α from clusters. We estimate that
with 2000 clusters, the constraint obtainable
would be σ(α)/α0 = 0.0052, while in the
limit of an infinitely large sample of clus-
ters, the best constraint, limited only by cos-
mological uncertainties, would be σ(α)/α0 =
0.0032. Upcoming data from on-going exper-
iments such as Planck are expected to im-
prove the constraints on cosmological param-
eters. In particular, Martinelli et al. (2012)
calculated forecasts for a combination of fu-
ture CMB and weak lensing data for a Planck-
satellite like and a Euclid-satellite like exper-
iments, for a model where α is also allowed
to vary. Using the priors on cosmological pa-
rameters from these experiments, with 2000
clusters the constraint on α would improve to
σ(α)/α0 = 0.0034, while in the limit of an ex-
tremely large number of clusters, the ultimate
constraint, limited only by cosmological uncer-
tainties, would be σ(α)/α0 = 0.00061.

4. Conclusions

We propose a new method to constrain the fine
structure constant by using SZ and X-ray ob-
servations, opening a complementary redshift
window on α. With 61 clusters in our data set,
no evolution has been detected in the scaling
relation between the integrated Compton pa-
rameter YS Z D2

A and the X-ray analogous pa-
rameter YX so far. We can take advantage of
this fact to put a constraint on the fine structure
constant in the redshift range 0 . z . 0.5 at the
0.8% level. The ratio between the two param-
eters have in fact a strong dependence on the

fine structure constant, namely (YS Z D2
A/YX) ∝

α3.5.
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